Centralizing maps on invertible or singular matrices over division rings

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On nest modules of matrices over division rings

Let $ m , n in mathbb{N}$, $D$ be a division ring, and $M_{m times n}(D)$ denote the bimodule of all $m times n$ matrices with entries from $D$. First, we characterize one-sided submodules of $M_{m times n}(D)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $D$. Next, we introduce the notion of a nest module of matrices with entries from $D$. We ...

متن کامل

on nest modules of matrices over division rings

let $ m , n in mathbb{n}$, $d$ be a division ring, and $m_{m times n}(d)$ denote the bimodule of all $m times n$ matrices with entries from $d$. first, we characterize one-sided submodules of $m_{m times n}(d)$ in terms of left row reduced echelon or right column reduced echelon matrices with entries from $d$. next, we introduce the notion of a nest module of matrices with entries from $d$. we ...

متن کامل

Column-Partitioned Matrices Over Rings Without Invertible Transversal Submatrices

Let the columns of a p× q matrix M over any ring be partitioned into n blocks, M = [M1, . . . , Mn]. If no p × p submatrix of M with columns from distinct blocks Mi is invertible, then there is an invertible p×p matrix Q and a positive integer m ≤ p such that QM = [QM1, . . . , QMn] is in reduced echelon form and in all but at most m − 1 blocks QMi the last m entries of each column are either a...

متن کامل

Linear maps preserving or strongly preserving majorization on matrices

For $A,Bin M_{nm},$ we say that $A$ is left matrix majorized (resp. left matrix submajorized) by $B$ and write $Aprec_{ell}B$ (resp. $Aprec_{ell s}B$), if $A=RB$ for some $ntimes n$ row stochastic (resp. row substochastic) matrix $R.$ Moreover, we define the relation $sim_{ell s} $ on $M_{nm}$ as follows: $Asim_{ell s} B$ if $Aprec_{ell s} Bprec_{ell s} A.$ This paper characterizes all linear p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2014

ISSN: 0024-3795

DOI: 10.1016/j.laa.2013.10.016